Calcul d'une intégrale (Méthode de Simpson)

Calculatrices CASIO 6900G - 6910G - G20 - G25

SIO Calculatrices TEXAS O - G25 Ti 80

On pourra nommer ce programme : SIMPSON

"BORNE INF" ?
$$\rightarrow$$
 A
"BORNE SUP" ? \rightarrow B
(B-A) \div 20 \rightarrow H
A \rightarrow X : Y1 \rightarrow I
B \rightarrow X : Y1 + I \rightarrow I
A \rightarrow X
For 1 \rightarrow K To 19
X + H \div 2 \rightarrow X
4 Y1 + I \rightarrow I
X + H \div 2 \rightarrow X
2 Y1 + I \rightarrow I
Next
X + H \div 2 \rightarrow X
4 Y1 + I \rightarrow I
H I \div 6 \rightarrow I

Attention : la séquence Y1 s'obtient en

faisant: VARS GRPH Y 1

Utilisation pour calculer, par exemple

$$\int_0^2 \frac{1}{x^2 + x + x} \mathrm{d}x :$$

• Saisir la fonction :

$$Y1 = 1 \div (X^2 + X + 1)$$

- Lancer le programme SIMPSON
- Saisir 0 puis 2 puis lire le résultat : I ≈ 0.824137...

On pourra nommer ce programme : SIMPSON

Disp "BORNE INF"
Input A
Disp "BORNE SUP"
Input B
$$(B-A)/20 \rightarrow H$$
 $A \rightarrow X : Y1 \rightarrow I$
 $B \rightarrow X : Y1 + I \rightarrow I$
 $A \rightarrow X$
For $(K, 1, 19)$
 $X + H / 2 \rightarrow X$
 $4 Y1 + I \rightarrow I$
 $X + H / 2 \rightarrow X$
 $X + H / 2 \rightarrow X$

La séquence Y1 s'obtient avec YVARS Pour obtenir un résultat sous forme de fraction, on peut ajouter à la fin du programme :

Utilisation pour calculer, par exemple

$$\int_0^2 \frac{1}{x^2 + x + x} \mathrm{d}x :$$

• Saisir la fonction :

$$Y1 = 1/(X^2 + X + 1)$$

- Lancer le programme SIMPSON
- Saisir 0 puis 2 puis lire le résultat : I ≈ 0.824137...